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CREEPING FLOW SOLUTION OF THE LEIDENFROST PHENOMENON 

by K e n n e t h  J. Baumeister and Thomas D. H a m i l l  

Lewis Research Center  

SUMMARY 

The mass  evaporation rates and heat transfer coefficients are determined theoreti- 
cally for liquid drops that a r e  supported by their own superheated vapor over a flat hot 
plate. 

beneath the drop and a saturated vapor cover. The assumptions a r e  made that the bottom 
of the drop is at the saturation temperature and that evaporation takes place uniformly 
beneath the drop. 

For  steady-state laminar incompressible flow, assuming constant properties, the 
Navier-Stokes equations with inertia te rms  neglected, the continuity equation, and the 
energy equation a r e  solved simultaneously to obtain the heat-transfer coefficient. 

The liquid drops a r e  assumed to  have a flat disk geometry with a uniform vapor ga.p 

For  heat transfer t o  the drop 

h i  = X[l + (7Cp AT/BOXl -3  

For heat transfer f rom the plate 

X* P = X + (7Cp AT/20Xg f k  + (1/5)(Cp AT/Xg 

where h is the heat-transfer coefficient, k is the thermal conductivity of the vapor, 
p is the density, p is the absolute viscosity, Le is the equivalent geometry factor, 
and X is the heat of vaporization. 

viously obtained by a computer solution of the exact Navier-Stokes equations. 
work was in excellent agreement with experiments. 
t e rms  in the Navier-Stokes equation are negligible relative to the viscous terms.  

These closed form results agree with the value of the heat-transfer coefficient pre- 
The ear l ie r  

The conclusion is drawn that inertia 



INTRODUCTION 

Investigations of heat transfer to liquid drops that are supported by their own super- 
heated vapor were begun as far back as 1756 when Leidenfrost (ref. 1) described the 
phenomenon of film boiling. At present, references 2 and 3 indicate considerable interest 
in the subject of drop vaporization in the fields of internal combustion engines and metal- 
lurgy. 

film boiling on a flat plate a r e  presented in references 4 and 5. Reference 6 presents a 
solution of the exact Navier-Stokes equation and the energy equation; however, a grapi- 
cal approach was used to combine the energy and momentum equations. Although this 
approach gives a physical insight into the coupling between the momentum and energy 
equations, the relation of the heat-transfer coefficient to the basic fluid properties is 
obscured. 

Reference 7 shows how the computer solution to  the exact Navier-Stokes equation 
and energy equation can be combined to  yield a closed form solution fo r  the heat- 
transfer coefficient h. 
nature to that derived by Bromley (ref. 8) for heat transfer in stable film boiling. 
Bromley's analysis is based on the solution of the momentum equations in which the 
inertia t e rms  have been assumed negligible. 

The similarity between the results of references 7 and 8 led to the observation that 
a closed-form solution of the governing equations without the use of computer solutions 
could be obtained by neglecting inertia effects (creeping flow). 

results a r e  compared to the computer solutions, which had considered the inertia effects. 

Dimensional and semiempirical correlations for  the evaporation of liquid drops in 

The resulting form of the heat-transfer coefficient is s imilar  in 

Solution of the Navier-Stokes equations neglecting inertia t e r m s  is obtained, and the 

SYMBOLS 

2 A area, f t  

a constant of proportionality, s e c - l  

C constant 

cP 
specific heat of vapor at  constant pressure, Btu/(lb mass)(OF) 

unit vector in upward z-direction - 
e, 
F force, l b fo rce  

f transformation variable, ft/s ec 
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G 

gC 
h 

k 

Le 
Q 

M 

P 

Pr 

r 

rO 

T 

AT 

t 

U 

V 

W 

W 

Z 

CY 

6 

77 
x 
x* 
I-1 

V 

axial pressure variable, sq f t  

acceleration of gravity, ft/sec 2 

dimensional conversion factor, 32. 1739 (ft)(lbmass)/( lbforce)(sec 2 ) 

heat-transfer coefficient, Btu/(hr)(ft 2 0  )( F) 

thermal condu ct ivity of vapor, B tu/( hr) (f t) ( O F )  

equivalent geometry factor, f t  (see eq. (31)) 

average calculated drop thickness, f t  

mass of drop, lb mass 
static pressure,  lb force/ft 2 

environmental pressure,  lb force/ft 2 

rate of heat flow, Btu/(hr)(ft 2 ) 
Prandtl number 

radius, ft 

maximum radius of drop, f t  

temperature, OF 

time, s e c  

radial velocity, ft/sec 

drop volume, ft 

velocity, ft/sec 

axial velocity, ft/sec 

axial coordinate, f t  

thermal diffusivity of vapor, CY k/p C ft2/sec 

gap thickness, f t  

3 

v P’ 

4 6 
heat of vaporization, Btu/lb mass  

modified heat of vaporization, Btu/lb mass  

absolute viscosity of vapor, lb  mass/(ft)(sec) 

kinematic viscosity of vapor, ft /sec 2 
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I 

E dummy variable, f t  

p density, lb  mass/ft 

T dummy variable, ft 

Subscripts: 

3 

f 

i 

Q 

P 

sat 

V 

z 

6 

film 

index 

liquid 

plate 

evaluated a t  saturation condition 

vapor 

axial coordinate 

evaluated at lower surface of drop 

Superscripts: 

f derivative with respect to  independent variable 

- vector 

BASIC MODEL AND EQUATIONS 

The model used in this study applies to large drops fo r  which a flat disk model 
(fig. l), can be used. For example, references 5 to  '7 indicate that fo r  water drops in 
the volume range 0. 05 to  1 cubic centimeter, the analytical model based on a flat disk 
geometry reasonably satisfies the physical situation. 

The following assumptions are made in developing the analytical model: 
(1) Heat transfer and evaporation from the upper surface a r e  considered negligible 

(2) Radiation is neglected. 
(3) Physical observation indicates that the gap thickness is a function of radial posi- 

in comparison to  rates of transport beneath the drop. 

tion; however, to  make the problem mathematically tractable, a uniform gap thickness 
6 is assumed. 

(4) In a s imilar  manner, the geometric shape of the drop is approximated by a flat 
disk with constant thickness Q ,  where Q is defined by the equation 

Q = -  V 

=rO 
2 
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, -u( r ,  z) - Steam 

\\\\\\~\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\~) P- r 

t 
flow 

Heated plate 

F igure 1. - Schematic model of evaporation of f lat d i s k  

The relation between V and ro 

was found numerically by balancing the gravitational force against the surface tension 
force (ref. 6 ) .  

(5) Because of a low calculated Reynolds number (ref. 6 ) ,  the flow is assumed lami- 
ner  and incompressible with negligible energy dissipation. In addition, the body force of 
the vapor in the momentum equation has been neglected. 

for  this assumption is given in the main text of the report, as well as in appendix A. 
(6) The inertia t e rms  in the Navier-Stokes equation are neglected. 

(7) In the energy equation, it is assumed that 

Justification 

aT u - < < w  -, 
az ar az r ar 

(8) The velocity and temperature profiles at any instant are assumed to be in steady 

(9) The bottom of the drop is at the saturation temperature. 
state. 

(10) Evaporation takes place uniformly beneath the drop. 
(11) The properties of the flow field are evaluated at the film temperature, defined 

as 

5 



Tp + Tsat T, = 
2 1 (4) 

Consequently, f o r  this case of axisymmetric flow, the governing equations are as 
follows: 

(1) Momentum, 

+ - - - -  

(2) Continuity, 

au u aw - + - +  - =  0 
ar r az 

2 az az 

for  the boundary conditions 

T = T  
P 

z = o  u = o  w = o  

u = o  w = w(6) T = Tsat z =  6 

r = O  u = o  

r =  r z = o  P = Po 
0 

(4) Static-force balance (neglecting reactive force, see  appendix B), 

6 



2 + nroPo P(r, 6)2rr d r  = Vp 
Q& 

(5) Interface energy balance, 

The static-force balance has a phisical interpretation; in that the weight of the drop 
is assumed equal t o  the force  resulting from the pressure difference between the upper 
and lower surface of the drop. Mathematically, equations (13) and (14) are necessary t o  
make the problem determinate, since the values of 6 and w(6) in boundary condition 
(eq. (10)) a r e  unknown. 

will  now be performed. Figure 2 presents a solution flow chart of the problem. This  
chart may be used as an aid in understanding the analysis now presented. 

ables. The boundary conditions specified by equations (9) t o  (14) do not make the problem 
determinate at this time. For  example, additional boundary conditions on w are re- 
quired at the radial boundaries; however, as seen in figure 2, a similarity analysis is 

The solution involving the above set  of differential equations and boundary conditions 

The differential equations (5) to (8) contain two independent and four dependent vari- 

Constant 
of propor- 
t ional i ty 

velocity 

Ord ina ry  
flow 
equations 

Value Flow 
equations 

, I 

balance d i s t r i bu t i on  
S im i la r i t y  
t rans fo rms  

Forward 
coupl ing 

Energy I 
equation I c 

Figure 2. - Solut ion flow chart. 

Heat- t ra  n sfer 
coefficient 

I 
Gap I 
thickness- I 

I I 

balance 
I I 
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used in the solution. The similarity transforms will reduce the order  of the equation and 
will satisfy the boundary conditions so  that the problem becomes determinant. 

METHOD OF SOLUTION 

Momentum Equations 

By assuming constant fluid properties, the interaction of the equations of motion 
with the energy equation ceases, and the velocity field no longer depends on temperature. 
A similarity transform is now used that reduces the partial differential equations 
(5) to  (7) into a set of ordinary differential equations. Since the governing equations and 
boundary conditions between the three-dimensional stagnation flow problem and this 
problem are similar, the transforms for  the three-dimensional stagnation flow problem 
a r e  used (ref. 9): 

w = -2f(z) (15) 

These transformations satisfy the requirements of reducing the partial differential 
equations in two variables into an  ordinary equation in one variable and of satisfying the 
radial boundary condition of equation (11). In addition, these transformations reduce the 
functional dependency of the dependent variables on the independent variables in such a 
manner that the problem is now determinant. For example, w is no longer a function of 
r and thereby requires no specification at the radial boundaries. 

Substituting equations (15) and (16) into equations (5) t o  (7) results in the ordinary 
differential equations 

and 
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Solving equation (18) and applying boundary conditions (9) and (10) result in 

f = + l a 2 ( ? 6 z 2 -  6 v  2 zy 
But expressing f in t e r m s  of w by equation (15) yields 

Therefore, at the bottom surface of the drop 

2 l a  63  
6 v  

w(6) = - - -  

Thus, the axial velocity at the surface of the drop is directly proportional t o  the cube 
of the gap thickness. Physically, f o r  a given pressure distribution under the drop l e s s  
flow is required to keep the same pressure level for smaller values of 6 ,  as prescribed 
by equation (15). The constant a is now determined from conditions of static equilib- 
rium. 

Integrating equation (19) and substituting in the first derivative from equation (20) 
result in 

G =  - 2 k z  - z2) + C (23) 

Substituting into equation (17) gives the pressure distribution as 

Solving for  C using boundary condition (12) and substituting the value of C into 
equation (24) result in 

9 



I I11l1l1111lIIIlIlIIl I I I1 

At the bottom surface of the drop 

1 2 p v  2 

gc 
P(r, 6 )  = - a - (ro - r2) + Po 

Substituting the above relation into equation (13) and solving for a2 result in 

Therefore, the final expression for pressure is 

P ( r , z ) = P  +---(ri-  2 g r2)---- 4 g ( d z - z  2) 
0 

7 r4 gc 
0 

7T r4 gc 
0 

When equation (27) is substituted into equation (22), the axial velocity at the surface 
becomes 

2 pQ g 63  
w(6) = - j--p - - 4 

Pv rov 

Note that for  the flat disk geometry used in this model 

2 V = nroQ 

Defining 

4 
o v  L = - = -  

r 

e v ,2Q2 

yields 

2 pQ g 6 3  w(6) = - -- - 
3'Pv vLe 

10 



Thus, for  the drop to remain in equilibrium, the magnitude of the axial velocity 
leaving the surface of the drop is proportional to the cube of gap thickness. 

Energy Equation 

Since w is a known function of z, the energy equation can now be solved directly. 
Equation (8) can be rewritten in the form 

Integrating the above equation and applying the boundary condition at z = 0 (eq. (9)) 
,esult in 

T - T P = C2 lz dc exp l' d7 

At z = 6, 

Tsat - T p = C2 l6 d' exp 6' dT 

Therefore, dividing equation (34) by equation (35) yields 

(3 4) 

( 3  5) 

Substituting the value of w f rom equation (21) into equation ( 3 6 )  gives for the first 
integration 

11 
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2 4  a 6  
12va 
- 

As a general numerical example, for a 1-cubic centimeter water drop on a flat plate 
at 600' F (appendix A, and noting that a = v/Pr) 

2 4  
-- a - 0.056 (3 9) 
12va 

Therefore, the exponential may be expanded and the second and higher order  t e rms  
neglected. Thus, 

Substituting equation (40) into equation (36) and continuing the integration result in 

\ a v 4 0  

The temperature gradient of any point z is found by a simple differentiation of 
equation (41) resulting in 

At  z = 6  

12 



dT 
dz 
- 

o r a t  z =  0 

a 

1 a2 4 -- 6 
40 QV 

- - 
6 

40 QV 

(43 1 

(44) 

The above expression f o r  the temperature gradient will be used in the determination 
of the heat-transfer coefficients in the next section. 

Heat-Transfer Coeff ic ient  To The Drop 

An energy balance on the liquid drop results in 

which is the interface energy balance of equation (14). 

equation (43) results in 
Substituting the value of w from equation (22) and the temperature gradient from 

2 4  a 6  When it is noted that - is small  compared with 1, expansion by the binominal 
1 2 v a  

theorem gives 

13 



2 
1-- a G 4  

1 a2 4 1---6 
120 (Yv 

40 av 

as a n  approximation when second and higher order  t e r m s  are neglected. 
Solving equation (46) for 6 results in 

6 =  

Substituting the value of a2 from equation (27) yields 

The heat-transfer coefficient to  the drop is defined as 

Therefore, 

(47) 

- *sat) I 

Substituting the value of w from equation (22), the value of 6 from equation (49) 
and rearranging t e rms  result in a heat-transfer coefficient to  the drop of the form 

14 



where the modified latent heat of vaporization Xp* is defined as 

* x A, = 

Heat -Tr a n s fe r Coef f i c  ie  nt From P late 

The heat-transfer coefficient f rom the plate is defined by the following equation 

h A T  = -k- 
a z  aT I z=o P (54) 

Substituting in the value of the temperature gradient given by equation (44), using equa- 
tion (49) in the f i r s t  t e rm of equation (44), and rearranging t e r m s  give 

h =  
P 6 ATv i (1 

1 

_ _  
40 av 

(55) 

2 Substituting the values of a (eq. (27)) and Le (eq. (31)) into the above equation yields 

where 

15 



2 But substituting into equation (57) the value of 6 from equation (49), and the value of a 
from equation (27), and clearing fractions yield 

x 
cPATJ 
x [+g) 4 

o r  

( 7 h 1+-- 

The difference between ha and h 

Equations (52) and (56) agree with the functional form of Bromley's equation (ref. 8) 

results from sensible heating effects in the 
P 

superheated vapor. 

for  film boiling heat transfer from a horizontal tube. The only significant difference is 
that the diameter of the tube is replaced by the newly defined geometry factor Le. 

COMPARISON TO COMPUTER SOLUTION OF THE EXACT NAVIER-STOKES EQUATION 

References 6 and 7 present solutions to this problem by solving the exact Navier- 
Stokes equation. It is enlightening at this t ime to compare some of the results of this 
earlier work, which considered inertia effects, to the results of the present paper, which 
has neglected inertia effects. 

It was observed in reference 6 that the radial velocity profile was for all practical 
purposes parabolic in shape. 
combining equation (16) and the f i r s t  derivative of equation (20) yields 

This agrees with the result of the present paper, since 

2 l a r  2 
2 v  

u =  (z - 6z) 

16 



o r  

which fo r  a fixed r, indicates that the velocity distribution is parabolic in shape. 
The axial velocity at the surface of the drop, as given in reference 8, is 

a2 3 w = -0.172 - 6 
V 

Likewise, this compares very closely with the results shown in equation (22). In fact, 
the difference in these two coefficients could be due mostly t o  computer inaccuracies 
rather than to the magnitude of the inertia terms: except for  corrections on the modified 
latent heat of vaporization in equation (53) and (59), the expressions fo r  the heat-transfer 
coefficients are equal to  the results in reference 7 where inertia t e r m s  were considered. 

radial and axial components of the inertia t e rms  are negligibly small  at the surface of 
the drop and at the plate; however, the inertia te rm for the axial component is significant 
in the center of the vapor gap because the viscous te rm goes to  zero. 
conditions at the center of the gap do not control the heat-transfer process going on at 
the wall and at the drop surface. 
this analysis. 

Finally, a numerical calculation is presented in appendix A which shows that the 

Nevertheless, 

Consequently, the inertia effects can be dropped in 

CONCLUDING REMARKS 

In the evaporation process t o  a liquid drop, the heat-transfer coefficient is shown to  
be equal to 

F o r  heat-transfer to  the drop 

17 



For heat-transfer f rom the plate 

20 x j 
1 P  C AT\4 
-- 

A I  
It is shown by a comparison with a numerical solution of the exact Navier-Stokes 

equations, that the inertia effects in the flow field are negligible. The analytic expres- 
sions fo r  hi are identical in form to the Bromley equation fo r  film boiling from a 
vertical plate. Theoretical and experimental values of the heat-transfer rates are in 
good agreement as shown in reference 7 .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 10, 1965 
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APPENDIX A 

COMPARISON OF INERTIA TERMS WITH PRESSURE AND 

VISCOUS TERMS IN NAVIER-STOKES EQUATION 

The validity of the creeping motion approximation can be checked by evaluating the 
acceleration t e r m s  in  the momentum equations using the velocity functions (eqs. (15) 
and 16)). 

If the acceleration t e rms  are small compared with viscous o r  pressure terms,  at 
the very least, the solutions are consistant with the assumptions under which they were 
derived. 

The ratio of viscous to Inertia effects in the radial direction are first considered. 
inertia acceleration in the radial direction is given by 

2 a u  V- 

A s  a typical case, consider a l-cubic-centimeter water drop on a plate a t  600' F and 
atmospheric pressure.  For  this case (ref. 6) 

-2 sec 2 a = 4. 5x10 

I, = 4.0XlO -4 ft2/sec 

6 = 4.0x10- f t  

By using the preceding equations, the ratio expressed in equation ( A l )  has a minimum 
value at 7 = 1 of about 18, and goes to  infinity at the wall. Thus, the viscous terms 
always dominate the inertia t e rms  for  the radial flow. 
shown in figure 3 .  

Finally, consider the axial component of momentum with inertia t e r m s  retained 

A plot of the ratio (eq. (Al)) is 

19 



la. o -, 
0 .2  . 4  .6 .8 1.0 

Fractional distance f rom plate, 216 

Figure 3. - Comparison of viscous w i t h  i ne r t i a  te rms  in  
radial direction. 

where w = w(z) only. 
It must be shown that 

2 

dz 

dw d w  w-<<v- 
2 dz  

(A3 1 

Using the expression for w(z) 
(eq. (21)) and defining 7 = z/6 yield 

W-=45(-11 dw a 6  3 2 - q”)q - 7j2) (A4) 
2 2  dz 3v 

and 

(A51 
2 2 d w  

2 dz 
v-= - a 6(1 - 2q) 

For the 1-cubic centimeter drop 
previously considered the preconstants 
of the q functions become 

4 5  2 a 6 = 430 ft/sec 
r) 

3 v L  

(A7) 
2 2 a 6 = 1800 ft/sec 

The inertial acceleration in the z-direction w dw/dz goes through a maximum at 
about 77 = 0.686. The value of the inertial acceleration is computed to  be 3 5 . 3  feet per  
second squared. At the same distance from the wall the viscous te rm is about 20 times 
greater  than the inertia term; however, the results of this calculation can be misleading 
because there is a region near the center of the gap where the computed inertia t e r m s  are 
larger  than the viscous terms.  F o r  example, at z = 6/2 the viscous acceleration t e r m  
is identically zero; whereas, the inertia te rm w dw/dz is equal to  27 feet per second 
squared. A complete picture of the region where the inertia t e rms  become appreciable 
is given in figure 4, where the ratio of viscous to inertia t e rms  is plotted as a function 
of the distance from the plate. In the range 0 . 4 4  c: z/6 5 0 . 6 0  the ratio of viscous to  

20 



inertia te rms  becomes l e s s  than 10 in 
absolute magnitude. Outside this region 
the inertia forces  a r e  small compared 
with viscous forces. 

The region of inconsistency encoun- 
tered in comparing viscous and accelera- 
tion t e rms  in the axial direction might 
cast some doubt on the analytical solu- 
tion, but it is felt that the only effect of 
the inertia t e rms  is to  distort the velocity 
profile somewhat in the center of the 
vapor film. 

The inertia effects on the velocity, 
- pressure, and temperature profiles in 

the vicinity of the wall o r  the vapor- 

transfer coefficient depends mostly on the 
thickness of the gap, which is determined 
by the pressure distribution at the liquid- 

0 . 2  . 4  .6 .8 1.b vapor interface. Since the inertia effects 
produce only minor perturbations of the 
pressure field in the vicinity of the inter- 
face, the computed gap thickness and 

- liquid interface a r e  small. The heat- 

Y) 3 0 

.- u, -M- 

A2 -40- 

> 
0 
0 z 

L 

-60 - 

- 

I l l  I I I I I I  - 80 

Fractional distance f rom plate, z/b 

Figure 4. - Comparison of viscous w i t h  i ne r t i a  te rms  in  
axial direction. 

heat-transfer coefficient should not be affected by neglecting the inertia te rms .  In the 
problem of film boiling in a forced-convection boundary layer, a s imilar  conclusion was 
reached in reference 10: inertia forces  are not important in the vapor fi lm for the range 
of parameters  usually encountered in practice. 

2 1  
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In reference 11, 

APPENDIX B 

REACTIVE FORCE 

the momentum theorem for a control volume V is given by 

All the elements of the drop were assumed to move at the same velocity 

- - 
For this problem Wl and Wv are parallel t o  the z-axis and may be conveniently 

expressed as the product of a sca la r  and a unit vector Bz in the axial direction. Thus, 

- 
W , = W F ?  Q z  

dA = -dAez 

Therefore, the force balance in the axial direction yields 

If the gap thickness is assumed to remain approximately constant over a short period 
of time, WQ and Wv can be considered constants. Thus, 

w~ aM Pv 2 

gc at gc 
F = -  - - - W  (6)A 

V 

22 



But, 

= p@Wv(6) 
dt 

The r ef o re, 

If it is assumed that the drop moves uniformly downward to keep the gap thickness 
constant, 

dM 
dt 
- 

WQ = - 
pQA 

Therefore, substituting equations (B8) and (B10) into equation (B9) results in 

F o r  regions sufficiently 
compared with 1; thus, 

far from the critical point, the density ratio is negligible 

The forces  exerted by the surroundings are a result of pressure  and gravity. Thus 

2 
PVAWV( 6 )  

r 
-VpQ +l P(r, 6 ) 2 m  d r  - m0PO 2 = - 

gC gC 

The t e rm on the right side of equation (B13) is defined as the reactive force assoc- 
iated with the ejection of mass  f rom the drop surface. 

23 



For a plate temperature of 600' F and a 0. 5-cubic centimeter water drop, the re- 
active force is computed (ref. 6) to  be 4. 6X10-6 pound force; compared with the weight 
of the drop, 1060X10-6 pound force, the reactive force is not important. Thus. 

g 2 P(r, 6)2nr d r  = V p n  - + a r  P 0 0  
gC 

Equation (B14) is referred to  as the static-force balance in the text (eq. (13)). 

24 
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